Take Control of Your IPv6 Transition

Tom Siracusa and Robbie Harrell

What is IPv6?

Fundamentally:

a new packet header with a larger address space

Strategically:

an enabler of new networkbased capabilities that previously had been difficult or impossible with IPv4

Version	IHL	Type of Service	Tota	al Length
Identification			Flags	Fragment Offset
Time to L	_ive	Protocol	Header Checksum	
Source Address				
Destination Address				
Options				Padding

IPv6 provides:

- The larger address space
- The new fields
- Standard packet header options

An intended ripple effect of more addresses is:

less dependency on NAT, thus allowing more end-to-end applications

What Happens If I Am Not IPv6 Ready?

The Problem: IPv4 addresses will not be able to communicate with IPv6 addresses without some help

- Customers may not be able to reach your website
 - IP-enabled mobile devices may not locate IPv4 websites
 - IPv4/IPv6 eCommerce sites may not be able to receive orders from IPv6/IPv4 users
- Global communication/expansion will become challenging
 - Many Asian and European countries are migrating to IPv6
- Customized marketing will become more difficult
- Enterprises may experience increased SPAM activity
- Unified communications capabilities will be impacted
- Application capabilities may be limited: Machine to Machine

Be In Control of Your Own Destiny:Start Planning for Ipv6 Today

Customer Drivers for IPv6

- 1. Mobility applications
- 2. Remote access

3. Remote site connectivity (Branch offices, SoHo)

- 4. Extranet connectivity
- 5. Cloud Computing

Integrating Mobile Applications

- Mobile devices/smart devices are key drivers in moving to IPv6
 - RFID tags: Each tag has an IP address
 - Asset tracking: Mixing GPS tracking with wireless connectivity produces millions of unique endpoints requiring IP addresses
 - Smart-Grid: Smart meters need to be uniquely addressable, producing millions of IP addresses
 - Shift to VoIP wireless endpoints:
 Phones require permanent and constant
 IP uniqueness
- Wireless application integration can be complex and potentially expand the requirements for IPv6 from the network, middleware platforms and back-office systems

Supporting Remote Access via Internet

The Internet is the key application for IPv6 transitions

There are two main considerations:

1. Enable external users (wide variety)

- Begin planning to dual-stack your public-facing Internet Services
- Include all Web and email servers and the supporting network, security and operations capabilities
- Security controls, equipment, processes and policies are prevalent in the External facing internet services. All must support IPv6 capabilities

2. Enable internal users (employees/guests)

- Develop strategy regarding dual stack vs. tunneling architecture
- Tunneling allows for IPv6 hosts to connect to the Internet over IPv4 I AN's and WAN's
- Priority sequencing of transition should be Internet, Hosts, WAN/LAN, Servers

IPv6 Requirements for Remote Locations

- Remote locations interconnect via the WAN, the Internet and sometimes wirelessly
- Many locations use the WAN as the primary communication method and the Internet as backup
 - If any system, application or user at a remote site requires
 Internet access or services, the site must support IPv6 on the LAN and WAN
 - The site can be enabled with dual stack capabilities or utilize tunneling mechanisms
 - Determining where to dual stack and where to tunnel are dependent upon network readiness for IPv6
 - Decisions around upgrade, refresh or replacement of network equipment to support dual stack are necessary

Preparing Extranets

- Business partners historically use "Extranet" solutions to interface with customer applications
 - Extranet access via the Internet is common, but private networks do exist.
 - Identify partners or suppliers in US Government, Asia or Europe
 - Understand the direction and requirements of your business partners - Will they transition first? How will that impact you?
 - Develop an IPv6 architecture and strategy for the aspects of the environment that provides Extranet connectivity

The Impact of IPv6 on Cloud Computing

Cloud computing utilizes 3 major approaches:

Private Cloud, Public Cloud and a Hybrid of both

1. Private Cloud

- Utilizes non-Internet based delivery
- Impact of IPv6 can be minimal

2. Public Cloud

- Utilizes Internet-based infrastructure,
- Impact of IPv6 can be significant

3. Hybrid

- Depending on utilization of Internet,
 IPv6 impact can be significant
- If you are considering moving home grown applications to an Internet-based cloud, application rewrites may be required
- Common off the Shelf Applications will require IPv6 compliance validation and testing prior to be candidates for public cloud

IPv6 Transition Guidelines

Enable IPv6 in the Internet

Enable your public-facing Web and email servers with an IPv6 address in addition to IPv4 addresses. This makes more resources available via IPv6 for everyone

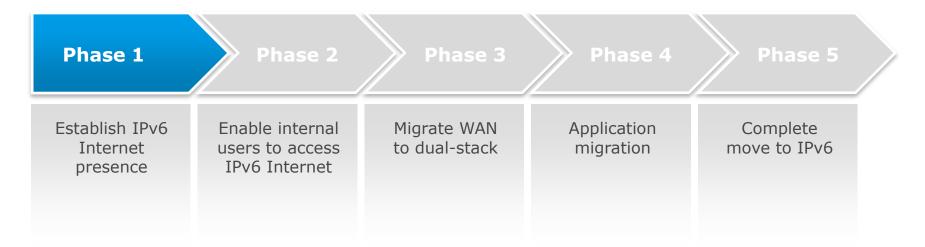
Extend IPv6 to Reach External Users

Implement dual-stack IP addressing on all public-facing Web servers and other equipment. Ensure you account for "Extranet users"

Implement Dual Stack on Your Internal WAN

Tunnel where not feasible

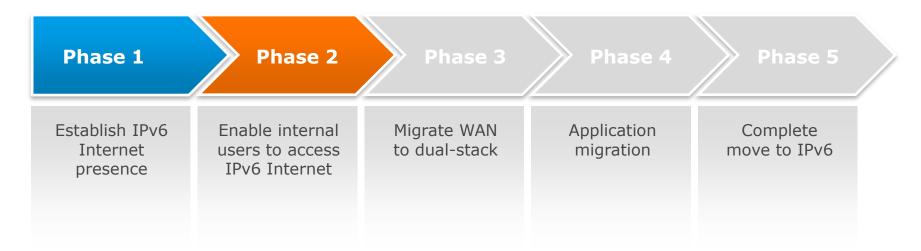
Consider Impact on Other Initiatives


Whether it is in emerging services such as Cloud or mobility or expansion of current services, IPv6 connectivity should be integral to future planning

Get Started Now

While painstaking, IPv6 is necessary and will require change across the IT footprint. Large Scale NAT should be transitional, temporary, if used at all

Phase 1

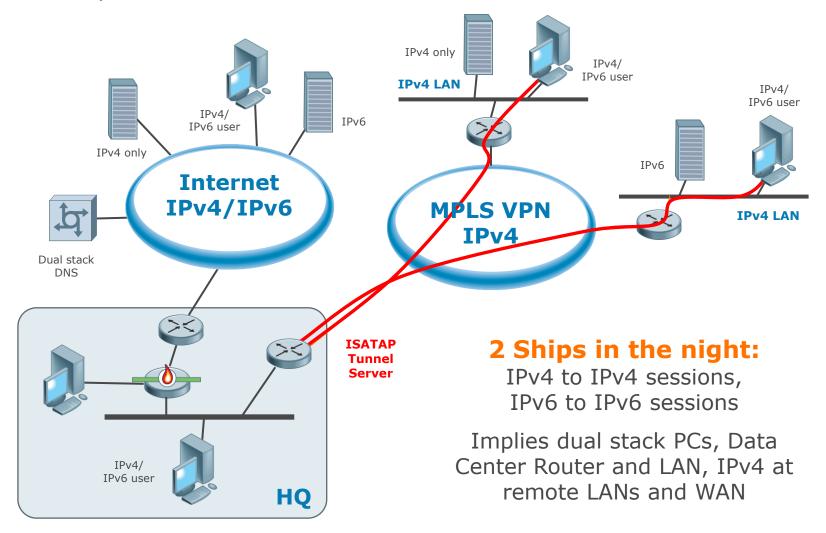

When: 2010-2011

Why: Want IPv6 Internet presence, Potential reach to Partners/suppliers if needed

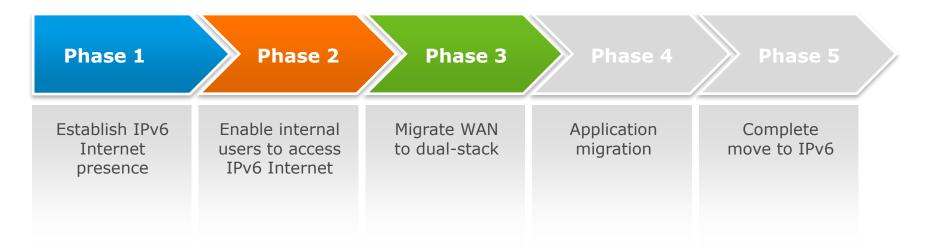
Impact: DMZ addressing, Web Servers, Load Balancers, Firewalls, Internet Facing Router

Phase 2

When: 2010-2012

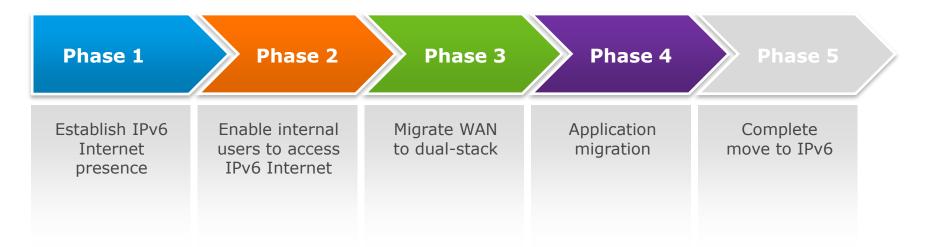

Why: Want to reach IPv6 Internet content

Impact: Proxy, Tunneling (ISATAP)


Phase 2: IPv4 WAN with Dual Stack Internet

(ISATAP)

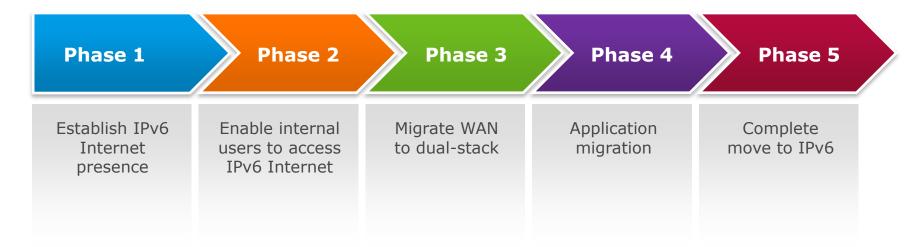
Phase 3


When: 2010-2014

Why: IPv6 support at remote locations. Integration of UC, mobility, push apps, etc

Impact: WAN addressing plan, DHCPv6 vs. Autoconfig, DNS, LDAP, remote LANs, routers to dual stack, WAN carrier support

Phase 4


When: 2012-2020?

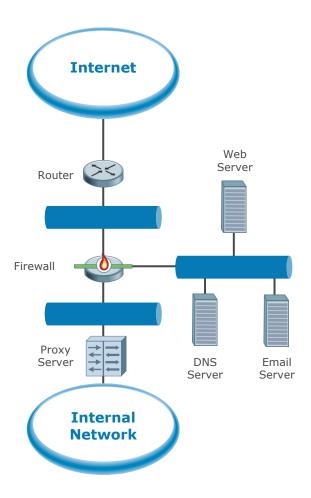
Why: Must migrate applications before you can turn down IPv4

Impact: 32 bit IPv4 fields in applications, screen (e.g.; reporting tools), etc, must move to support 128 bit IPv6 address

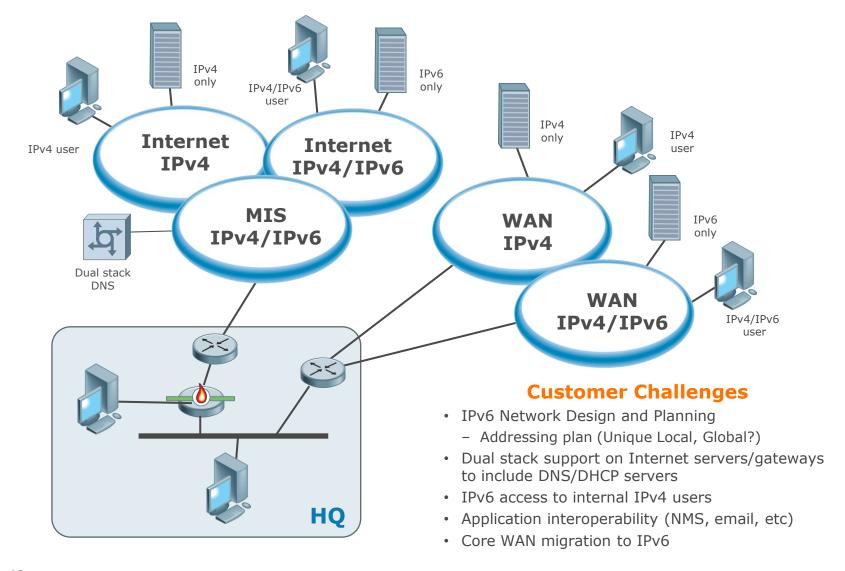
Phase 5

When: 2015-2020?

Why: Move to IPv6 ONLY


Impact: May need v6 to v4 NAT or proxy to get to remaining IPv4 sites. Likely provided "in the network"

Establishing IPv6 Internet Presence is a **Priority**


Some of the pieces and parts of this IPv6 Phase 1 are:

- Internet connectivity
 - Dual Stack (IPv4/IPv6)
- Router
- Firewall
 - Inside
 - Outside
 - DMZ
- Servers
 - Web
 - DNS
 - Email
- Proxy Servers

IPv6 Migration: 3 – 5 years (feasible?)

Planning Process for IPv6

Program Governance and Communication

- Create IPv6 transition timelines, sequencing and interdependencies
- Identify governance team to oversee plan
- Develop review and program management aspects of overall plan, timelines and assigned transition teams
- Execute plan

Infrastructure Readiness

- Quantify infrastructure readiness and understand transition impacts
- Categorize Components for Readiness

Design and Engineering

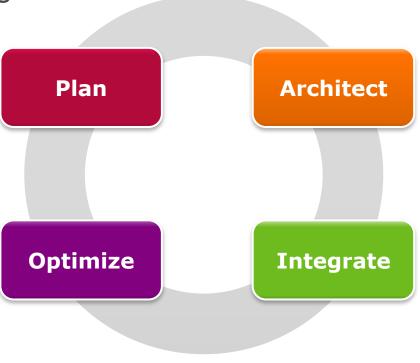
- Develop detailed design and equipment configurations, including:
 - IP addressing
 - DNS
- Identify and assign transition sequencing and engineering tasks

Strategy and Architecture

- Research IPv6 technologies utilized for transition (tunnels, translation mechanisms)
- Develop IP Addressing Plan
- Develop a thorough transition strategy

Testing and Piloting

- · Create IPv6 test labs
- Develop test plans and production piloting
- Conduct dual stack testing
- Tunneling


AT&T Can Help You With Any Phase of Your Ipv6 Planning Process

AT&T Consulting Can Help....

- IPv6 Strategy and Roadmap Services
- IPv6 Architect & Design Services

IPv6 Implementation Services

Questions & Discussion

Resources

View this Webcast:

http://www.business.att.com/enterprise/exchange resource/Topic/technology-trends/Speeches/june 2010 ipv6/

View Previous Webcast: IPv6 Getting Ready

<u>IPv6 - Getting Ready | Executive Summary | Trends | Enterprise Business | AT&T</u>

View Our online site:

http://www.business.att.com/IPv6

Thank You for joining us today

Visit our Idea Exchange community http://ideaexchange.business.att.com/

Take Control of Your IPv6 Transition

http://ideaexchange.business.att.com/t5/Take-Controlof-your-IPv6/bd-p/IPv6-Getting-Ready

Our presenters will be available to answer additional questions.

Rethink Possible

